### Rolling Pendulum Photography

Concave transparent acrylic body with spherical curvature. A rolling ball oscillates

inside the concavity about its rest position like a mathematical pendulum does.

The radius of curvature is equivalent to the length of a normal pendulum.

**Diameter of balls: 16 mm**

**Radius of curvature: 200 mm**

**Diameter: 140 mm**

A rolling ball bearing moves inside a concave acrylic body of spherical curvature. The radius of curvature of the acrylic body corresponds to the length of the pendulum. One special case is a circular motion of the ball around the vertical where it acts like a conical pendulum. Mathematically speaking, the way the location of the oscillating ball changes over time is described by the space vector in spherical coordinates.

### My MA degree show installation – ‘Kinetic Energy’

I have recently completed the MA Art and Science course at Central Saint Martins. For my degree show, I wanted to present work that mapped and visually traced a variety of processes including oscillations, Lichtenberg figures and pendulum movements using a variety of mechanisms like harmonographs and Wimshurst machines. My practice involves finding ways of visualising mathematical concepts and the nature of physical laws, from electromagnetism and sound to elementary particles. I have been researching and selecting different types of natural phenomena that can be described using equations.

**MAXWELL’S EQUATIONS AND LICHTENBERG FIGURES**

I applied to show my work at Imperial College as part of the Center for Doctoral Training event. I displayed some pieces that are direct visualisations of static electricity (Lichtenberg figures, see below). During my time at the college, I spoke to MRes student Jeevan Soor about my works. He spoke to me about Maxwell’s equations and how they help to describe Lichtenberg figures. I wondered if the toner dusting process had been used in forensic science and he mentioned that footprints are recorded using an electrostatic lifter. Forensic scientists use a device that generates static charge, and the charge draws the dust from the print on to the black plastic.

I have been exploring the possibilities of using electricity as an artistic tool. Through using a Wimshurst machine, I have been charging up plastic surfaces with static then dusting powders on the surface, thus visualising the invisible Lichtenberg figures left in the plastic. I then exposed the patterns onto photopolymer plates, resulting in works that are visually similar to the piece above. The works are direct visual representations of electricity.

**TUNING FORK DRAWINGS**

I demonstrated and recorded sound oscillations. This is a recording of sound oscillations on a sooted glass plate. One of the two prongs was equipped with a metal tip. I also used the tuning fork on a zinc etching plate. (below)

**KEPLER’S LAWS DRAWN IN SULPHUR**

The artwork below depicts different phases of the Belousov-Zhabotinsky reaction (2016). The zebrafish is a model organism for pattern formation in vertebrates. First found in chemicals in dishes, (Belousov-Zhabotinsky) then in the stripes and spirals and whorls of animals, Turing patterns are everywhere. Perhaps these patterns extend to ecosystems and galaxies. My plotting electrode and its graphical depiction of Kepler’s laws (image above, 2017) is also a visual representation of Turing inhibitors because the electrode is constantly turning on and off – hence the zebrafish texture.

I’m interested in making links between processes, using the micro to explain the macro – for example, Lissajous figures drawn in sand could be illustrative of Lissajous orbits – the orbital trajectories of planets. My work unravels like Ariadne’s thread, proceeding by using multiple means and attempting exhaustive applications of logic.

Some of the processes are mathematically chaotic in nature, and leave behind a fractal pattern. The idea of chaotic patterning is fascinating and may seem contradictory – one pendulum may represent chaotic motion, the other harmonic – the Lichtenberg figures are chaotic discharges, but may also display self-similarity.

I’m interested in the idea of the mechanical prosthesis between the artist and the art – the work being able to describe something of the natural world. The performative aspect of the work also takes the form of scientific demonstration to be able to describe something about the inventor or discoverer of the equipment or process I am demonstrating.

The delineation of time is also important – simply through visual analysis, the individual strokes of some of my pieces can be given time stamps. The marks produced by plotting electrodes change in reference to its speed – the same can be said for the tuning fork works.

How do these small (Wimshurst machine) and giant (the Large Hadron Collider) technological devices help us to understand the physical universe on different scales?

The relationships that connect this world together are mysterious, indeed, why do these relationships exist? Why and when does mathematical structure appear? Is it that the structure of physical laws is transmitted from a solitary point – the symmetry that becomes diminished and scatters as the universe unwinds itself to the viewer?

### ‘Kepler, Sulphur Drawing’: The curved movement of a plotting electrode is recorded using the sulphur-marking system.

‘Kepler, Sulphur Drawing 1’: The curved movement of a plotting electrode is recorded using the sulphur-marking system. This produces time-interval marks. Using the distances between the marks as points of reference, one can measure the speed of the electrode. An alternating voltage at the mains frequency is applied between the electrode and the tracing plate, so that the sulphur powder is alternately attracted and repelled according to the changing polarity.